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Abstract-We study the effective heat conductivity k of a periodic cubic array (with side length r) of 
perfectly conducting spheres of the volume cp, embedded in a matrix material with conductivity 1. We 
construct a sequence of quasifractional approximants for the effective conductivity. As the bases for the 
construction we use the perturbation approach for cp -+ 0 and asymptotic formula for q + 7-r/6 (limiting 

value of sphere) and as a tool-quasifractional approximants. Copyright 0 1996 Elsevier Science Ltd. 

1. INTRODUCTION 

One of the main tasks of the theory of dispersed media 
is a theoretical prediction of the effective transport 
properties. The subject we discuss in this paper has a 
long history dating back to J. C. Maxwell (1873). The 
problem may be formulated in a number of math- 
ematically equivalent ways, but here we shall discuss 
it in the language of heat conductivity: we wish to 
determine the effective conductivity of an infinite sim- 
ple cubic lattice of identical macroscopic, perfect con- 
ducting spheres, immersed in a matrix. In ref. [1] is 
displayed a table showing light distinct physical prob- 
lems which may be solved by analogous mathematical 
methods. One of these is the above mentioned con- 
ductivity problem, while others involve calculating the 
dielectric constant, the magnetic permeability, electric 
conductivity, elastic constants, etc. 

The calculation of k for a general type of composite 
was originally discussed by Maxwell (1873) and sub- 
sequently has been considered by many others. The 
solution for the case of small spheres was first exam- 
ined by Rayleigh (1892), who described the pol- 
arization of each sphere in an external field by an 
infinite set of multipole moments. This method has 
recently been extended, with the aid of modern digital 
computers, so that a large number of multipoles can 
now be calculated [2, 31. A historical review of the 
subject, including an exhaustive list of references, was 
recently compiled in ref. [4]. 

The power-series expansion has been used to con- 
struct Pade-approximants and continued fraction rep- 
resentation of the effective conductivity in refs. [5, 61. 

Pade approximants are successfully used in the theory 
of composite materials as calculations of the effective 
constants and for estimation of the upper and lower 
bounds for it [.5]. Neither of the above mentioned 
methods yields accurate results for a system of per- 
fectly conductive, nearly touching spheres. In order to 
describe such a system in ref. [7] an asymptotic for- 
mula is derived. However, the validity range of this 
formula is not known. However, there still remains a 
certain parameter range which is covered neither by 
the asymptotic formula nor by the solutions based 
assumption of small cp. 

Practically any physical or mechanical problem, 
whose parameters include the variable parameter E, 
can be approximately solved as it approaches zero, or 
infinity. How can this ‘limiting’ information be used 
in the study of a system at the intermittent values of 
E? This problem is one of the most complicated in 
asymptotic analysis. In many instances the answer 
to it is alleviated by two-point Pade approximants 

[g, 91. 
As shown in ref. [lo], two-point Pade approximants 

may be effectively used for the study of the effective 
heat conductivity 1 of a periodic square array of nearly 
touching cylinders of the conductivity A,, embedded 
in a matrix material of the conductivity 1,. It was 
constructed as a sequence of two-point Pade approx- 
imants for the effective conductivity of the system. As 
an input we use the coefficients of the expansion of I 
in powers of the parameter z = (1, - &)/& and the 
value of 1 for z -+ co. The two-point Pade approx- 
imants form a sequence of rapidly converging upper 
and lower bounds on the effective conductivity. The 
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NOMENCLATURE 

k effective thermal conductivity of a 
composite material 

Z auxiliary dimensionless parameter 
characterizing conductivities of 
components of a composite material, 
(1, -&)jn”. 

Greek symbols 
1 effective heat conductivity of the 

composite material with cylindrical 
inclusions 

Al heat conductivity of cylindrical 
inclusions 

2, heat conductivity of cylindrical 
inclusions 

10 heat conductivity of a matrix 
material 

* volume fraction of dispersed 
spheres 

x auxiliary parameter characterizing 
volume fraction of dispersed 
spheres, 1-(6$/~)‘:~. 

convergence is much better than in the case of Pade 
approximants discussed in the literature. 

Unfortunately, the asymptotic formula obtained in 
ref. [7] contains the logarithmic function ; that’s why 
two-point Pade approximants in its ‘pure form’ can’t 
be used in the problem under consideration. 

This problem is the most essential for two-point 
Pade approximants, because as a rule, one of the limits 
(E + 0 or E -+ cc) for real mechanical problems gives 
expansions with logarithmic terms or other com- 

Rayleigh extended this analysis to the case where the 
spheres are arrayed in a simple cubic lattice, obtaining 
for perfect conducting spheres 

k = 1-3q[(p- 1 +cv”~’ +O(C~‘~‘~)]~‘, CI = const. 

(2) 

Rayleigh gave the value a = 1.65. This was later cor- 
rected by Runge to 0.523. 

Sangani and Acrivos [3] obtained the following 

plicated functions. It is worth noting that in some expression for perfectly conducting spheres 

cases these obstacles may be overcome by using an 
approximate method of two-point Pade approximant 

k= 1-3&p-l+1.3047~‘“‘3(1+0.2305~“~3)/ 

construction by taking as limit points some small and (1-0.4054~“~) +O.O7231~p’~‘~ +0.1526(~” 
large (but finite) values [l 11, not e = 0 and E = co. 
On the other hand in the last few years, so called +0.0105$9*2’3 +o((p26’3)]m’. (3) 
quasifractional approximants, which give possibility 
to the overcoming of the above mentioned obstacles, 

Expressions (l))(3) give us perturbation solutions for 

are widely used in physics [ 121. 
cp<‘l. 

The main purpose of our paper is to fill in this gap. 
In their turn Batchelor and O’Brien [7] showed that 

To this end we develop a new approach based on 
for perfectly conducting spheres and cp tending to the 

an application of quasifractional approximants. We 
limit value n/6, the effective conductivity k has the 

construct it by using the coefficients of the per- 
following asymptotic form (x = 1 - (6q/7~)“~ + 0) 

turbation expansions of k at cp = 0 and asymptotic 
(see also ref. [3]) : 

formula for q --+ 71/6. This paper is organized as fol- k, = 0.5nlnX-0.7. (4) 
lows: in Section 2 we define the perturbative and 
asymptotic solutions. A description of our procedure 

Some numerical results are displayed in Fig. 1. As one 

is given in Section 3. In Section 4 we present numerical 
can easily see, taking into account the term of higher 

results and in Section 5 we discuss the advantages and order in the perturbation series does not lead to a 

limitations of our method in the light of the results 
satisfactory agreement between the exact and per- 

from the previous sections. 
turbative solutions. In this turn the asymptotic solu- 
tion can’t be used for small cp. This is the heuristic 
reason for the attempt of matching the perturbative 
and asymptotic solutions. 

2. PERTURBATIVE AND ASYMPTOTIC 

SOLUTIONS 
3. QUASIFRACTIONAL APPROXIMANTS 

Maxwell was the first to calculate the effective ther- 
mal conductivity k of a composite material volume Now we go to the problem of evaluating the effec- 

fraction of dispersed spheres rp << 1. For a perfectly tive conductivity in terms of quasifractional approx- 

conducting sphere imants [ 121. So, we will consider a function determined 
by a power series expansion at zero and having an 

k = I-34$(p-- 1))‘. (1) asymptotic expansion at infinity. We are now in a 
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Fig. 1. Effective conductivity 1 of a simple cubic array of 
perfectly conducting spheres as a function of volume fraction 
cp. The order of the theory is indicated. Numbers l-5 cor- 
respond to the theories of Maxwell [formula (l)], Rayleigh 
[formula (2)], Sangani and Acrivos [3] [formula (3)], exact 
value (McKenzie and McPhedran [13]) and asymptotic for- 

mula of Batchelor and O’Brien [7]. 

position to introduce the quasifractional approx- 
imants of the effective conductivity. By definition, the 
quasifractional approximant, in our case, is a ratio R, 
the coefficients of which are chosen in such a way 
that : (a) the expansion of R in powers of cp coincides 
with the corresponding perturbation expansion of k, 
equation (3), to the some order and (b) the asymptotic 
behavior of R coincides with the asymptotic 
expression (4). 

4. ANALYTICAL AND NUMERICAL RESULTS 

We now present results for the effective conductivity 
coefficient, which were obtained by using quasi- 
fractional approximants, introduced in the preceding 
section. 

Quasifractional approximants for our case may be 
written as follows : 

k =(1+2~+cpX’3k,/~)/(l-cp+(p*~3/~) (5) 

On the other hand, we may construct the approxi- 
mation as a logarithm of rational function in such 
a way that its perturbative expansions (cp + 0) and 
asymptotics for x + 0 coincide with formulas (2) and 
(4), respectively. 

k = -0.5rcln [(0.33883- 1.00121c1 

+ 0.765364~’ + (P*‘~/( 1 - 1.2407~‘:‘))/ 

(1 - 1.045035~+0.349038~2+cps3/ 

(1 - 1.2407rp”‘))‘] -0.7 (6) 

Some numerical results are displayed in Fig. 2. For 
comparison we also show the empirical formula by 
Keller [ 161 

k = -0.5rrln(rr/6-cp) (7) 
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Fig. 2. The experimental measurements of Kharadly and 
Jackson [14] (+) and of Meredith and Tobias [15] (*) are 
compared with the quasifractional approximants equations 
(5), (6), Keller’s empirical formula [16] equation (7) and 
exact theoretical curve 1131 (curve 1,2, 3 and 4 respectively). 

As mentioned in ref. [7], this formula gives a good 
agreement with the exact solution, but can’t give cor- 
rect asymptotic behaviour for cp -+ 0. 

It is clear that formula (5) better describes the solu- 
tion for v + 0 and formula (6) is better for x --t 0, but 
the discrepancy between them is not large, and this 
fact justifies the above mentioned procedure. 

5. CONCLUDING REMARKS, PERSPECTIVES 

AND PROBLEMS 

The main advantages of the two-point Pade approx- 
imants and quasifractional approximants are the sim- 
plicity of the algorithms and the possibility of using 
only a few terms of the expansions. Besides, it is poss- 
ible to take into account the known singularities of 
the defined functions. 

On the other hand, one of the important problems 
of using two-point Pade approximants and qua- 
sifractional approximants is the control of the accu- 
racy of the realized matching. Sometimes we can use 
numerical or approximate analytical methods. Along 
with the comparison of known numerical or analytical 
solutions. or numerical and experimental results, it is 
also possible to verify the modified expansions by their 
mutual correspondence. 

Evidently two-point Pade approximants and qua- 
sifractional approximants are not a panacea, and in 
some cases they fail. In these cases it is possible to 
apply other methods of interpolation. 
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